Search results for "hyperbolic group"

showing 10 items of 13 documents

Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles

2007

We call Poincare time the time associated to the Poincar6 (or first return) map of a vector field. In this paper we prove the non-accumulation of isolated critical points of the Poincare time T on hyperbolic polycycles of polynomial vector fields. The result is obtained by proving that the Poincare time of a hyperbolic polycycle either has an unbounded principal part or is an almost regular function. The result relies heavily on the proof of Il'yashenko's theorem on non-accumulation of limit cycles on hyperbolic polycycles.

Critical period; finiteness; non-accumulation; quasi-analyticity; Dulac problem.Applied MathematicsGeneral MathematicsLimit cycleMathematical analysisHyperbolic manifoldPrincipal partUltraparallel theoremVector fieldRelatively hyperbolic groupCritical point (mathematics)Hyperbolic equilibrium pointMathematicsProceedings of the American Mathematical Society
researchProduct

On the hyperbolic limit points of groups acting on hyperbolic spaces

1998

We study the hyperbolic limit points of a groupG acting on a hyperbolic metric space, and consider the question of whether any attractive limit point corresponds to a unique repulsive limit point. In the special case whereG is a (non-elementary) finitely generated hyperbolic group acting on its Cayley graph, the answer is affirmative, and the resulting mapg +↦g −, is discontinuous everywhere on the hyperbolic boundary. We also provide a direct, combinatorial proof in the special case whereG is a (non-abelian) free group of finite type, by characterizing algebraically the hyperbolic ends ofG.

Discrete mathematicsPure mathematicsHyperbolic groupGeneral MathematicsHyperbolic 3-manifoldHyperbolic angleHyperbolic manifoldUltraparallel theoremRelatively hyperbolic groupMathematicsHyperbolic equilibrium pointHyperbolic treeRendiconti del Circolo Matematico di Palermo
researchProduct

SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS

2007

We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …

General MathematicsGeometric Topology (math.GT)Group Theory (math.GR)Van Kampen diagramRelatively hyperbolic groupConductorCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryArtin L-functionFOS: MathematicsArtin groupArtin reciprocity lawCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematicsInternational Journal of Algebra and Computation
researchProduct

Boundary Behavior of Harmonic Functions on Gromov Hyperbolic Manifolds

2013

Hyperbolic groupGeneral MathematicsHyperbolic functionMathematical analysista111Systolic geometryHyperbolic manifoldBoundary (topology)Relatively hyperbolic groupCalderón–Stein theoremHarmonic functionGromov hyperbolic manifoldsharmonic functionsHyperbolic equilibrium pointMathematicsInternational Mathematics Research Notices
researchProduct

Total curvatures of convex hypersurfaces in hyperbolic space

1999

We give sharp upper estimates for the difference circumradius minus inradius and for the angle between the radial vector (respect to the center of an inball) and the normal to the boundary of a compact $h$-convex domain in the hyperpolic space. We apply these estimates to get the limit at the infinity for the quotients Volume/Area and (Total $k$-mean curvature)/Area of a family of $h$-convex domains which expand over the whole space. The theorem for the first quotient gives an extension to arbitrary dimension of a result of Santalo and Yanez for the hyperbolic plane.

Hyperbolic groupGeneral MathematicsHyperbolic spaceHyperbolic 3-manifoldMathematical analysisHyperbolic angleMathematics::Metric GeometryHyperbolic manifoldUltraparallel theoremHyperbolic triangleRelatively hyperbolic groupMathematicsIllinois Journal of Mathematics
researchProduct

THE HOROSPHERICAL GEOMETRY OF SUBMANIFOLDS IN HYPERBOLIC SPACE

2005

Some geometrical properties associated to the contact of submanifolds with hyperhorospheres in hyperbolic -space are studied as an application of the theory of Legendrian singularities.

Hyperbolic groupGeneral MathematicsHyperbolic spaceMathematical analysisHyperbolic 3-manifoldHyperbolic manifoldUltraparallel theoremGeometryHyperbolic motionMathematics::Geometric TopologyRelatively hyperbolic groupMathematics::Differential GeometryMathematics::Symplectic GeometryHyperbolic triangleMathematicsJournal of the London Mathematical Society
researchProduct

Non-equivalent hyperbolic knots

2002

We construct, for each integer n 3, pairs of non-equivalent hyperbolic knots with the same 2fold and n-fold cyclic branched covers. We also discuss necessary conditions for such pairs of knots to exist.  2001 Elsevier Science B.V. All rights reserved. MSC: primary 57M25; secondary 57M12, 57M50

Hyperbolic knotsPure mathematicsQuantitative Biology::BiomoleculesCyclic branched coversHyperbolic groupSkein relationHyperbolic 3-manifoldOrbifoldsHyperbolic manifoldVolume conjectureMathematics::Geometric TopologyBonahon–Siebenmann decompositionKnot theoryAlgebraIntegerGeometry and TopologyMathematicsTopology and its Applications
researchProduct

Non-immersion theorem for a class of hyperbolic manifolds

1998

Abstract It is proved that a non-simply-connected complete hyperbolic manifold cannot be isometrically immersed in a Euclidean space with a flat normal connection. In particular, the complete hyperbolic manifold M n with π 1 ( M ) ≠ 0 cannot be isometrically immersed in R 2 n − 1 .

Pure mathematicsHyperbolic groupHyperbolic spaceMathematical analysisHyperbolic 3-manifoldHyperbolic manifoldUltraparallel theoremMathematics::Geometric TopologyRelatively hyperbolic groupStable manifoldComputational Theory and MathematicsMathematics::Metric GeometryMathematics::Differential GeometryGeometry and TopologyAnalysisHyperbolic equilibrium pointMathematicsDifferential Geometry and its Applications
researchProduct

The horospherical Gauss-Bonnet type theorem in hyperbolic space

2006

We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space and show that totally umbilic hypersurfaces with vanishing cur- vatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space. + (i1) by using the model in Minkowski space. We introduced the notion of hyperbolic Gauss indicatrices slightly modified the definition of hyperbolic Gauss maps. The notion of hyperbolic indicatrices is independent of the choice of the model of hyperbolic space. Using the hyperbolic Gauss indicatrix, we defined the principal hyperbolic curv…

Pure mathematicsMathematics::Dynamical SystemsGauss-Bonnet type theoremHyperbolic groupMathematics::Complex VariablesGeneral MathematicsHyperbolic spaceMathematical analysisHyperbolic manifoldUltraparallel theoremhorospherical geometryhyperbolic Gauss mapshypersurfacesRelatively hyperbolic groupMathematics::Geometric Topology53A3553A0558C27hyperbolic spaceHyperbolic angleMathematics::Differential GeometryMathematics::Representation TheoryHyperbolic triangleHyperbolic equilibrium pointMathematics
researchProduct

Bilateral denseness of the hyperbolic limit points of groups acting on metric spaces

1997

Pure mathematicsMetric spaceHyperbolic groupGeneral MathematicsInjective metric spaceMathematical analysisEquivalence of metricsMetric differentialFisher information metricIntrinsic metricMathematicsConvex metric spaceAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
researchProduct